Colles de Maths - semaine 13 - MP*1

Julien Allasia - ENS de Lyon

Exercice 1 Soit $\alpha > 1$. Montrer qu'il existe une constante C et une variable aléatoire X à valeurs dans \mathbb{N}^* telle que

$$\forall k \in \mathbb{N}^*, \quad \mathbb{P}(X = k) = \frac{C}{k^{\alpha}}.$$

En considérant les événements $\{\{p \text{ divise } X\}, p \text{ premier}\}$, montrer que

$$\zeta(\alpha) = \prod_{p \text{ premier}} \left(1 - \frac{1}{p^{\alpha}}\right)^{-1}.$$

Exercice 2 Soit $X \in \mathcal{M}_n(\mathbb{R})$ une matrice aléatoire dont les coefficients sont donnés par des variables aléatoires i.i.d. admettant une variance σ^2 . Déterminer l'espérance de det X ainsi que sa variance dans le cas où les coefficients sont centrés.

Exercice 3 En utilisant des variables de Poisson, déterminer un équivalent de

- 1. $\sum_{k=0}^{\lfloor an\rfloor} \frac{n^k}{k!} \text{ lorsque } a > 1;$
- 2. $\sum_{k=|an|}^{\infty} \frac{n^k}{k!} \text{ lorsque } a < 1.$

Exercice 4 Soit une famille $(X_{i,j})_{1 \le i < j \le n}$ une famille de variables de Bernoulli de paramètre p_n mutuellement indépendantes. On considère le graphe aléatoire de sommets [1, n], et d'arêtes $\{\{i, j\}, i < j \text{ et } X_{i,j} = 1\}$. Soit X_n le nombre de points isolés dans le graphe.

Déterminer la limite quand $n \to \infty$ de $\mathbb{P}(X_n \ge 1)$ dans les deux cas suivants :

- 1. $n p_n \ln n \to +\infty$;
- $2. \ n p_n \to a > 0.$

Exercice 5 Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. On considère une suite $(A_n)_{n \in \mathbb{N}}$ d'événements. On note

$$\limsup A_n = \{ \omega \in \Omega, \ \omega \in A_n \text{ pour une infinité de } A_n \}.$$

- 1. On suppose que $\sum \mathbb{P}(A_n) < \infty$. Montrer que $\mathbb{P}(\limsup A_n) = 0$.
- 2. On suppose que $\sum \mathbb{P}(A_n) = \infty$ et que les (A_n) sont indépendants. Montrer que $\mathbb{P}(\limsup A_n) = 1$.

Exercice 6 (**) Soit $(X_n)_{n\in\mathbb{N}\cup\{\infty\}}$ des variables aléatoires discrètes définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans \mathbb{N} . Montrer que les assertions suivantes sont équivalents :

1

- (i) $\forall f : \mathbb{R} \to \mathbb{R}$ continue bornée, $\mathbb{E}[f(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[f(X_\infty)]$;
- (ii) $\forall x \in \mathbb{R}, \ \mathbb{P}(X_n \leqslant x) \xrightarrow[n \to \infty]{} \mathbb{P}(X_\infty \leqslant x);$
- (iii) $\forall x \in \mathbb{R}, \ \mathbb{P}(X_n = x) \xrightarrow[n \to \infty]{} \mathbb{P}(X_\infty = x).$

Exercice 7 Soit $(X_n)_{n \in \mathbb{N} \cup \{\infty\}}$ des variables aléatoires définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans \mathbb{R} . Soit $1 \leq p < q$. Montrer que $(i) \Rightarrow (ii) \Rightarrow (iv)$ et $(iii) \Rightarrow (iv) \Rightarrow (iv) \Rightarrow (v)$, où

- (i) Convergence $L^q : \mathbb{E}[|X_n X_{\infty}|^q] \xrightarrow[n \to \infty]{} 0;$
- (ii) Convergence $L^p: \mathbb{E}[|X_n X_{\infty}|^p] \xrightarrow[n \to \infty]{} 0;$
- (iii) Convergence presque sûre : $\mathbb{P}(X_n \xrightarrow[n \to \infty]{} X_\infty) = 1$;
- (iv) Convergence en probabilité : $\forall \delta > 0$, $\mathbb{P}(|X_n X_\infty| > \delta) \xrightarrow[n \to \infty]{} 0$;
- (v) Convergence en loi : $\forall f : \mathbb{R} \to \mathbb{R}$ continue bornée, $\mathbb{E}[f(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[f(X_\infty)]$.

On pourra justifier que dans (iii), l'ensemble en argument est bien mesurable.

Exercice 8 On reprend les notations de l'exercice précédent. Supposons que (X_n) converge en probabilité vers X_{∞} .

- 1. En utilisant le lemme de Borel-Cantelli, montrer qu'il existe une extractrice φ telle que $(X_{\varphi(n)})$ converge presque sûrement vers X_{∞} .
- 2. En déduire une preuve du fait que la convergence en probabilité implique la convergence en loi.